
e04 – Minimizing or Maximizing a Function e04yac

nag opt lsq check deriv (e04yac)

1. Purpose

nag opt lsq check deriv checks that a user-supplied C function for evaluating a vector of functions
and the matrix of their first derivatives produces derivative values which are consistent with the
function values calculated.

2. Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_lsq_check_deriv(Integer m, Integer n,
void (*lsqfun)(Integer m, Integer n, double x[], double fvec[],

double fjac[], Integer tdj, Nag_Comm *comm),
double x[], double fvec[], double fjac[], Integer tdj,
Nag_Comm *comm, NagError *fail)

3. Description

The function nag opt lsq deriv (e04gbc) for minimizing a sum of squares of m nonlinear functions
(or ‘residuals’), fi(x1, x2, . . . , xn), for i = 1, 2, . . . , m; m ≥ n, requires the user to supply a C
function to evaluate the fi and their first derivatives. nag opt lsq check deriv checks the derivatives
calculated by such a user-supplied function. As well as the C function to be checked (lsqfun), the
user must supply a point x = (x1, x2, . . . , xn)

T at which the check is to be made.

nag opt lsq check deriv first calls lsqfun to evaluate the fi(x) and their first derivatives, and uses

these to calculate the sum of squares F (x) =
m∑

i=1

[fi(x)]
2, and its first derivatives gj =

∂f

∂xj

∣∣∣∣
x

, for

j = 1, 2, . . . , n. The components of g along two orthogonal directions (defined by unit vectors p1

and p2, say) are then calculated; these will be gT p1 and gT p2 respectively. The same components
are also estimated by finite differences, giving quantities

vk =
F (x + hpk) − F (x)

h
, k = 1, 2

where h is a small positive scalar. If the relative difference between v1 and gT p1 or between v2 and
gT p2 is judged too large, an error indicator is set.

4. Parameters
m
n

Input: the number m of residuals, fi(x), and the number n of variables, xj .
Constraint: 1 ≤ n ≤ m.

lsqfun

lsqfun must calculate the vector of values fi(x) and their first derivatives
∂fi

∂xj

at any

point x. (The minimization routine nag opt lsq deriv (e04gbc) gives the user the option
of resetting a parameter, comm->flag, to terminate the minimization process immediately.
nag opt lsq check deriv will also terminate immediately, without finishing the checking
process, if the parameter in question is reset to a negative value.)
The specification of lsqfun is:

[NP3275/5/pdf] 3.e04yac.1



nag opt lsq check deriv NAG C Library Manual

void lsqfun(Integer m, Integer n, double x[], double fvec[],
double fjac[], Integer tdj, Nag_Comm *comm),

m
n

Input: the numbers m and n of residuals and variables, respectively.

x[n]

Input: the point x at which the values of the fi and the
∂fi

∂xj

are required.

fvec[m]
Output: unless comm->flag is reset to a negative number, then fvec[i − 1] must
contain the value of fi at the point x, for i = 1, 2, . . . , m.

fjac[m*tdj]
Output: unless comm->flag is reset to a negative number, then the value in

fjac[(i − 1)*tdj+j − 1] must be the first derivative
∂fi

∂xj

at the point x, for

i = 1, 2, . . . , m; j = 1, 2, . . . , n.

tdj
Input: the last dimension of the array fjac as declared in the function from which
nag opt lsq check deriv is called.

comm
Pointer to structure of type Nag Comm; the following members are relevant to
lsqfun.

flag – Integer
Input: comm->flag will be set to 2.
Output: if lsqfun resets comm->flag to some negative number then
nag opt lsq check deriv will terminate immediately with the error indicator
NE USER STOP. If fail is supplied to nag opt lsq check deriv, fail.errnum
will be set to the user’s setting of comm->flag.

first – Boolean
Input: will be set to TRUE on the first call to lsqfun and FALSE for all
subsequent calls.

nf – Integer
Input: the number of calls made to lsqfun including the current one.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void * with a C compiler that defines void *
and char * otherwise.
Before calling nag opt lsq check deriv these pointers may be allocated
memory by the user and initialised with various quantities for use by lsqfun
when called from nag opt lsq check deriv.

The array x must not be changed within lsqfun.

x[n]
Input: x[j−1] (j = 1, 2, . . . , n) must be set to the co-ordinates of a suitable point at which to
check the derivatives calculated by lsqfun. ‘Obvious’ settings, such as 0.0 or 1.0, should not
be used since, at such particular points, incorrect terms may take correct values (particularly
zero), so that errors can go undetected. For a similar reason, it is preferable that no two
elements of x should have the same value.

fvec[m]
Output: unless comm->flag is set negative in the first call of lsqfun, fvec[i − 1] contains the
value of fi at the point given in x, for i = 1, 2, . . . , m.

3.e04yac.2 [NP3275/5/pdf]



e04 – Minimizing or Maximizing a Function e04yac

fjac[m][tdj]
Output: unless comm->flag is set negative in the first call of lsqfun, fjac[i− 1][j− 1] contains

the value of the first derivative
∂fi

∂xj

at the point given in x, as calculated by lsqfun, for

i = 1, 2, . . . , m; j = 1, 2, . . . , n.

tdj
Input: the second dimension of the array fjac as declared in the function from which
nag opt lsq check deriv is called.
Constraint: tdj ≥ n.

comm
Input/Output: structure containing pointers for communication to the user defined function;
see the above description of lsqfun for details. If the user does not need to make use
of this communication feature the null pointer NAGCOMM NULL may be used in the call to
nag opt lsq check deriv; comm will then be declared internally for use in calls to lsqfun.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE USER STOP
User requested termination, user flag value = 〈value〉.

This exit occurs if the user sets comm->flag to a negative value in lsqfun. If fail is supplied
the value of fail.errnum will be the same as the user’s setting of comm->flag. The check on
lsqfun will not have been completed.

NE INT ARG LT
On entry, n must not be less than 1: n = 〈value〉.

NE 2 INT ARG LT
On entry, m = 〈value〉 while n = 〈value〉. These parameters must satisfy m ≥ n.
On entry, tdj = 〈value〉 while n = 〈value〉. These parameters must satisfy tdj ≥ n.

NE ALLOC FAIL
Memory allocation failed.

NE DERIV ERRORS
Large errors were found in the derivatives of the objective function.

The user should check carefully the derivation and programming of expressions for the
∂fi

∂xj

,

because it is very unlikely that lsqfun is calculating them correctly.

6. Further Comments

nag opt lsq check deriv calls lsqfun three times.

Before using nag opt lsq check deriv to check the calculation of the first derivatives, the user should
be confident that lsqfun is calculating the residuals correctly.

6.1. Accuracy

fail.code is set to NE DERIV ERRORS if

(vk − gT pk)
2 ≥ h × ((gT pk)

2 + 1)

for k = 1 or 2. (See Section 3 for definitions of the quantities involved.) The scalar h is set equal
to

√
ε, where ε is the machine precision as given by nag machine precision (X02AJC).

7. See Also

nag opt lsq deriv (e04gbc)

[NP3275/5/pdf] 3.e04yac.3



nag opt lsq check deriv NAG C Library Manual

8. Example

Suppose that it is intended to use nag opt lsq deriv (e04gbc) to find least-squares estimates of x1,
x2 and x3 in the model

y = x1 +
t1

x2t2 + x3t3

using the 15 sets of data given in the following table:

y t1 t2 t3
0.14 1.0 15.0 1.0
0.18 2.0 14.0 2.0
0.22 3.0 13.0 3.0
0.25 4.0 12.0 4.0
0.29 5.0 11.0 5.0
0.32 6.0 10.0 6.0
0.35 7.0 9.0 7.0
0.39 8.0 8.0 8.0
0.37 9.0 7.0 7.0
0.58 10.0 6.0 6.0
0.73 11.0 5.0 5.0
0.96 12.0 4.0 4.0
1.34 13.0 3.0 3.0
2.10 14.0 2.0 2.0
4.39 15.0 1.0 1.0

The following program could be used to check the first derivatives calculated by the required function
lsqfun. (The tests of whether comm->flag �= 0 or 1 in lsqfun are present for when lsqfun is called
by nag opt lsq deriv (e04gbc). nag opt lsq check deriv will always call lsqfun with comm->flag set
to 2.)

8.1. Program Text

/* nag_opt_lsq_check_deriv (e04yac) Example Program
*
* Copyright 1991 Numerical Algorithms Group.
*
* Mark 2, 1991.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nage04.h>

#ifdef NAG_PROTO
static void lsqfun(Integer m, Integer n, double x[], double fvec[],

double fjac[], Integer tdj, Nag_Comm *comm);
#else
static void lsqfun();
#endif

main()
{
#define MMAX 15
#define NMAX 3
#define Y(I) comm.user[I]
#define T(I,J) comm.user[(I)*NMAX + (J) + MMAX]

double fjac[MMAX][NMAX], fvec[MMAX], x[NMAX];
double work[MMAX + MMAX*NMAX];
Integer i, j, m, n, tdj;
Nag_Comm comm;
static NagError fail;

3.e04yac.4 [NP3275/5/pdf]



e04 – Minimizing or Maximizing a Function e04yac

Vprintf("e04yac Example Program Results\n");
Vscanf(" %*[^\n]"); /* Skip heading in data file */

n = 3;
m = 15;
tdj = NMAX;

fail.print = TRUE;

/* Allocate memory to communication array */
comm.user = work;

/* Observations t (j = 0, 1, 2) are held in T(i, j)
* (i = 0, 1, 2, . . . , 14) */

for (i = 0; i < m; ++i)
{
Vscanf("%lf", &Y(i));
for (j = 0; j < n; ++j) Vscanf("%lf", &T(i,j));

}

/* Set up an arbitrary point at which to check the 1st derivatives */
x[0] = 0.19;
x[1] = -1.34;
x[2] = 0.88;
Vprintf("\nThe test point is ");
for (j = 0; j < n; ++j)

Vprintf(" %9.3e", x[j]);
Vprintf("\n");

fail.print = TRUE;
e04yac(m, n, lsqfun, x, fvec, (double *)fjac, tdj, &comm, &fail);

if (fail.code != NE_NOERROR) exit(EXIT_FAILURE);

Vprintf("\nDerivatives are consistent with residual values.\n");
Vprintf("\nAt the test point, lsqfun() gives\n\n");
Vprintf(" Residuals 1st derivatives\n");
for (i = 0; i < m; ++i)

{
Vprintf(" %9.3e ", fvec[i]);
for (j = 0; j < n; ++j)
Vprintf(" %9.3e", fjac[i][j]);

Vprintf("\n");
}

exit(EXIT_SUCCESS);
}

#ifdef NAG_PROTO
static void lsqfun(Integer m, Integer n, double x[], double fvec[],

double fjac[], Integer tdj, Nag_Comm *comm)
#else

static void lsqfun(m, n, x, fvec, fjac, tdj, comm)
Integer m, n;
double x[], fvec[], fjac[];
Integer tdj;
Nag_Comm *comm;

#endif
{
/* Function to evaluate the residuals and their 1st derivatives. */

#define YC(I) comm->user[(I)]
#define TC(I,J) comm->user[(I)*NMAX + (J) + MMAX]
#define FJAC(I,J) fjac[(I)*tdj + (J)]

Integer i;
double denom, dummy;

for (i = 0; i < m; ++i)
{
denom = x[1]*TC(i,1) + x[2]*TC(i,2);

[NP3275/5/pdf] 3.e04yac.5



nag opt lsq check deriv NAG C Library Manual

if (comm->flag != 1)
fvec[i] = x[0] + TC(i,0)/denom - YC(i);

if (comm->flag != 0)
{
FJAC(i,0) = 1.0;
dummy = -1.0 / (denom * denom);
FJAC(i,1) = TC(i,0)*TC(i,1)*dummy;
FJAC(i,2) = TC(i,0)*TC(i,2)*dummy;

}
}

} /* lsqfun */

8.2. Program Data

e04yac Example Program Data

0.14 1.0 15.0 1.0
0.18 2.0 14.0 2.0
0.22 3.0 13.0 3.0
0.25 4.0 12.0 4.0
0.29 5.0 11.0 5.0
0.32 6.0 10.0 6.0
0.35 7.0 9.0 7.0
0.39 8.0 8.0 8.0
0.37 9.0 7.0 7.0
0.58 10.0 6.0 6.0
0.73 11.0 5.0 5.0
0.96 12.0 4.0 4.0
1.34 13.0 3.0 3.0
2.10 14.0 2.0 2.0
4.39 15.0 1.0 1.0

8.3. Program Results

e04yac Example Program Results

The test point is 1.900e-01 -1.340e+00 8.800e-01

Derivatives are consistent with residual values.

At the test point, lsqfun() gives

Residuals 1st derivatives
-2.029e-03 1.000e+00 -4.061e-02 -2.707e-03
-1.076e-01 1.000e+00 -9.689e-02 -1.384e-02
-2.330e-01 1.000e+00 -1.785e-01 -4.120e-02
-3.785e-01 1.000e+00 -3.043e-01 -1.014e-01
-5.836e-01 1.000e+00 -5.144e-01 -2.338e-01
-8.689e-01 1.000e+00 -9.100e-01 -5.460e-01
-1.346e+00 1.000e+00 -1.810e+00 -1.408e+00
-2.374e+00 1.000e+00 -4.726e+00 -4.726e+00
-2.975e+00 1.000e+00 -6.076e+00 -6.076e+00
-4.013e+00 1.000e+00 -7.876e+00 -7.876e+00
-5.323e+00 1.000e+00 -1.040e+01 -1.040e+01
-7.292e+00 1.000e+00 -1.418e+01 -1.418e+01
-1.057e+01 1.000e+00 -2.048e+01 -2.048e+01
-1.713e+01 1.000e+00 -3.308e+01 -3.308e+01
-3.681e+01 1.000e+00 -7.089e+01 -7.089e+01

3.e04yac.6 [NP3275/5/pdf]


